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ABSTRACT

The current status, including small-sample behavior and ease of computa-

tion, of rank-based estimates and tests in the general linear model is reviewed.

For the important special case of Wilcoxon scores, details of application of

various procedures are discussed. The three different testing methods

considered may each be motivated by connecting it to one of three forms of

the usual least-squares F statistic. Possible algorithms for computation of

rank-based estimates and tests are presented. Each procedure is applied to

an example using data. Finally, the technical assumptions made to obtain

large-sample properties of these procedures, including the general-scores

case, are outlined and discussed.
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1. INTRODUCTION

The purpose of this paper is to review the current status of statistical

methods based on ranks in the linear model. Twenty years ago Hodges and

LehmAnn (1962) proposed aligned rank tests in a two-way layout. Their

approach was to remove the effect of the nuisance parameter and then construct

a test of hypothesis on the residuals. Aligned rank tests have received

much attention in the literature since 1962. Koul (1970) discussed aligned

rank tests for regression with two independent variables, and improvements

were suggested by Puri and Sen (1973). Recent papers by Adichie (1978) and

Sen and Puri (1977) describe aligned rank tests for the univariate and multi-

variate linear models, respectively.

Surprisingly, for all the attention accorded to aligned rank tests in

the past twenty years, they are not widely available to the data analyst.

For example, they are not currently contained in any of the statistical

packages, so some degree of special programming is required to implement

them.

There are alternative approaches to the aligned rank tests. By sub-

stituting for least squares a measure of dispersion based on ranks, due to

Jaeckel (1972), McKean and Hettmansperger (1976) proposed a test statistic

based on the reduction in dispersion due to fitting the reduced and full

models. This method uses rank estimates of the regression parameters.

Rank esLimates in regression were first proposed by Adichie (1967) as extensions

of the Hodges and Lehmann (1963) rank estimates of location. Another approach,

not discussed in the literature of nonparametric tests, is to construct a

quadratic form based on an R-estimate of the parameters in the linear model.

LI "
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In considering tests based on ranks we are interested in various

practical aspects. We will take as given that the procedures are asymptoti-

cally equivalent in the sense of Pitman efficiency and that they have the same

asymptotic null distribution. The practical questions are: (1) Does a

nominal size-a test maintain its size for small to moderate sample sizes?

The answer, based on simulations, usually is not quite, and some tuning

of the test statistic generally results. (2) What methods are available

for computing the test? Can the computations be carried out using existing

packages, or are special programs required? If iterative methods are used

in computing the tests what can be said about convergence? and (3)

Are there small sample differences in the powers of the various tests?

We will describe three methods of constructing tests based on ranks.

We will summarize the state of each method in the light of the three questions

above. An example will be given in Section 4 illustrating the three approaches

on a data set. Finally, since the legitimacy of these methods is based on

asymptotic theory, we have provided a list of assumptions that have been used

by various researchers to establish the asymptotic distributions.

It is disappointing to note that little is known about the behavior of

rank tests and estimates for small samples. Further, they are not generally

easy to compute. They require special programs for their implementation

with the exception of an aligned rank test in Section 2i. They are not

currently available in any statistical computing packages; however, in 1983

a rank-regression command will be available in the Minitab statistical computing

system. The output from this command will contain the rank estimate described

in Section 2ii and the rank tests described in Sections 2ii and 2iii.I
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2. RANK TESTS AND ESTIMATES

Problems in analysis of variance, analysis of covariance and regression

can often be treated in a unified manner by casting them in terms of a general

linear model. The recent books by Draper and Smith (1981) and Neter and

Wasserman (1974) contain many examples.

We begin with a linear model for the nxl vector y of observations,

specified by

y -la + X + e
(1)

- la* + Xc8 + e,

where a is the scalar intercept, 8 is a pxl vector of regression parameters,

X is an nxp design matrix and e is an nxl vector of random errors. In the

second equation, we have the centered design matrix Xc - X - iX' where X' is

a lxp vector of column means from X and a* - a + X'B. The details of an

example, with data, are given in Section 4.

Working assumptions will be listed as they are needed in the discussion;

a full list of technical assumptions is given in Section 5.

ASSUMPTION: Al. We suppose the n errors are independent, identically

distributed according to a continuous distribution which has arbitrary shape

and median 0.

ASSUMPTION: A2. Suppose X is of full rank p. We partition 8 into twoc

parts: 81 is (p-q)xl and B2 is qxl. Hence the model (1) can be written

y - la* + Xlco1 + X2c$2 + e. (2)

! U.
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We will consider tests of

so that is a (p-q)xl vector of nuisance parameters.

Before turning to the rank tests we will present the F statistic in a

form that will motivate the introduction of the aligned rank test.

Consider, first, the F statistic for H :8-0. There are no nuisance

parameters, and

Y'X cX 'X c)-X cy
^2 ' (3)

pa

^2 2
where a is the usual unbiased estimate of the error variance a , assumed

to be finite.

The general F statistic for H :8 -0 can be derived from (3) by removing
0 2

the effects of the nuisance parameters 8 from both y and Xc before applying
11

(3). Hence in (3) replace y by y - Xlca,, where 81 - (Xlc XIc) X±'y, the

reduced model least squares estimate, and replace Xc by Z X2c

-lc(XlcI -c)1Xlc'X2c Now p is replaced by q, the dimension of 82 and (3)

becomes the usual F statistic, written in unusual form,

(Y-X )'Z(Z')-lz'(y-X 8 )
A - (4)

pa

Further, a bit of matrix algebra shows that

- Xc (Xc 'X)-Xc ' -X CX X ) Xc*('z-c' c Xlc(Xc c c(5)

. . . ' . . .*. . . . 11 I I m n . . . . . .

.. . _ _ * _ ... |. .....w .i~
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(i) Aligned Rank Tests

These tests are easiest to implement when we use the Wilcoxon score

function; other score functions are discussed in Section 5. Let

O(u) - (12)1/2 (u - 1/2) , (6)

and define a(i) - 0(i/(n+l)). Then a(1) ... a(n) are called the Wilcoxon
Noe ha 1 1 12 n

scores. Note that f(u)du-o, 0J (u)du-1, andZ a(i)-O.
o 0o 1

We will let a(R(O)) denote the nxl vector whose ith component is

a(R(yi-Xi'B)), where R(Yi-xic'8) is the rank of yi-x' among the n uncentered

residuals.

ASSUMPTION: A3. Suppose is a reduced model estimate such that al(y+b) -
A 1/2)

i 8(Y)+b and n/21-al)-Op(1).

If the error distribution has finite variance and if the maximum leverage

tends to 0, then the results of Huber (p 157, 1981) show that the least-squares

estimate satisfies A3. For testing H0 :a2-0 we first align the observations

and construct a(R(B1)), the vector of rank-scored reduced-model residuals.

The aligned rank test statistic is constructed from the numerator of (4) by

replacing the residuals with a(R( :

A - a'(R( 1))Z(Z'Z)-Z'a(R( 1 )).(7)

Provided the technical assumptions in Section 5 are satisfied, Adichie

(1978) showed that A is asymptotically chi-squared with q degrees of freedom.

Hence a large sample test of H o:2"0 rejects H° if A Z Y(q). Note that

A is very easy to compute with a computer package that contains both least

*1
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squares and ranking capibilities. Computation is carried out in the

following way:

Cl. Find the reduced-model least-squares residuals,

C2. Find the ranks of these residuals and calculate

(12)1/2 ((n+l)-'R(yi-X'8I) - 1/2), i-i, ...

C3. Compute the F statistic on the values in C2; then A is

the numerator sum of squares.

Note that for each hypothesis of the form H0 :82=O which is to be tested a

new set of reduced model residuals must be computed. Minitab and SAS programs

are provided in Section 3.

Summary: We consider the three questions raised in the Introduction.

(1) There are no published studies of the small sample properties of A.

We do not know if the test, which is not nonparametric for finite sample

size, maintains its level near the nominal level. We do not know how large

the sample size should be before it is reasonable to use A. There are many

possibilities for choice of 81" The least-squares estimate or a rank estimate

discussed in the next subsection are possible candidates. We do not know

how the choice of 81 effects the level of the test for small samples;

asymptotically it makes no difference. In a small, unpublished study,

Hettmansperger and McKean (1981) find that in testing for parallelism, the

simulated levels of A were more erractic than the levels of the other tests

discussed below. Further, there was some indication that the presence of

good design points with moderate leverage can make A extremely conservative.

tm~ ~
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(2) As described above, if the least-squares reduced model estimate is used,

A is easy to compute. It would seem more natural to align the observations

using the rank estimate in (ii); see Sen and Puri (1977). Rank estimates

present computational difficulties that are discussed in Section 3. (3)

There are no published studies on small-sample power of A. In the unpublished

report by Hettmansperger and McKean (1981), A had very little power when there

was a moderate leverage point in the parallelism design.

(ii) Wald Test Statistic

This test is constructed from a quadratic form in the full model

rank estimate of 8; see Rao (1973) for a general discussion of the Wald

test statistic. The computation of the rank estimate requires specific

programs that are not generally available in statistical packages. In

Section 3 we discuss the computational problems that must be overcome to be

able to implement the Wald test. By 1983 there will be a rank-regression

command in the Minitab statistical computing system which will provide all

of the necessary computations. Until that time special programs are required

to implement the test.

We begin with Jaeckel's (1972) measure of dispersion of the residuals.

Using (6), define

D(B) - a'(R(B))(y-Xc) (8)

n
= Z a(R(yix-x'B)) (Yi-xi'8)
i-l

and

S(O) - 'a(R(6)). (9)
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The jth component of the pxl vector S(O) is given by Si (0)

(x -x)a(R(y-x_ ' )) the rank test statistic corresponding to the jth

component of 8. Jaeckel points out that -S($) is essentially the gradient

of D(O), so setting (9) to zero yields a set of non-linear normal equations

derived from D(O).

A rank estimate 8 minimizes D(O) or solves S(B);O. Jureckova (1971)

suggests the equivalent method of minimizing EIS (8)I.

-1ASSUMPTION: A4. Suppose n (X 'X ) converges to a positive definite matrix
c c

as n -
,

Then the limiting distribution of nl/
2(6-6) is MVN(O, T2n(Xc'X )-I

where

T 2 , 12{ f 2 (x)dx}2  (10)

and f(x) is the density of the error distribution. See Section 5 for a discussion

of score functions other than the Wilcoxon score function.

Let H = [0,I] where I is the qxq identity matris; then Ho:B 2-0 can be
1l/2(H

written as 0 :H =0. Now, n M - HB) has a limiting covariance matrix

T 2nH(Xc'X ) H', and the Wald statistic is

(HO)'[H(Xc'Xc )-H']-(HB)
(11)

T

The statistic W is analogous to the corresponding form of the F statistic

*2 2where 8 is the least-squares estimate and T is replaced by a . Graybill

(p 184, 1976) discusses this form of F in detail. Provided the technical

assumptions in Section 5 are met W has a limiting chi-squared distribution with

q degrees of freedom. Chiang and Puri (1982) also discuss W.
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To carry out the test we need a consistent estimate of T2 . Let w(x) -

1 for lxI 5 1/2 and 0 otherwise; then the following rectangular window

estimate of y - f f2(x)dx is consistent:

^=~~ i 'r-r
y + E w(- , (12)

n 3/2h n(n-l)hh
n

where ri  Yi - ic and

hn = (4.)nl/2 (r(.75n) - r(.25n)) (13)

The window width h incorporates a resistant estimate of scale, then

interquartile range of the residuals, and a normalizing factor. The factor

4.1, used in (13), corresponds to a normal error distribution. The estimate

(12) is a modification of a window estimate in the independent, identically

distributed case proposed by Schuster (1974) and independently by Schweder

(1975). The extension to the linear model is discussed by Aubuchon (1982).

We now take T2 . 1/(12 y 2) in (10). Then the test rejects Ho:a 2=0 if

2
W 2 x (q). This test is illustrated in Section 4.

An alternative estimate of i is available with the additional assumption

of symmetry of the error distribution.

ASSUMPTION: A5. Suppose the underlying error distribution is symmetric about 0.

Let W(1) W (N), N = n(n+l)/2 be the ordered set of all pairwise

averages of the residuals, including the residuals. These averages are

referred to as Walsh averages. Let c by the lower critical point of a

two-sided size-a Wilcoxon signed-rank test. Then under assumption A5,

McKean and Hettmansperger (1976) show that
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w (W(N-c) - W (c+l))/ (2Z /2) (14)

where 2Z is the 1-a interpercentile range of the standard normal distribu-

tion, is a consistent estimate of T in (10). This extends the results of

Lehmann (1963) in the independent and identically distributed case. A

discussion for general scores is given in Section 5.

We complete this subsection with a short discussion of k-step rank

^(k) 8(0)estimates (k, proposed by McKean and Hettmansperger (1978). Let

denote the least squares estimate of a and compute S( ( )) from (9) and

A (0)
T from (12), (or (14)), then, using a linear approximation to S(a) discussed

by Jureckova (1971), form

0(X' -l(0) +s((°)). (15)
T (c X O(5

The estimate B(k) formed by iterating (15) has the same asymptotic distribution

for any k-1, 2, ..., as 8, the rank estimate that minimizes D($) in (8).

Hence a(k) could be used in W to construct a test. Generally, (k) does not

converge to 8 as k increases. It is probably best to take around 4 or 5

steps and then construct W.

Summary: (1) There are no published studies that show how the level of

W behaves for small samples. There is no indication of how large the sample

size should be before the asymptotic distribution provides a good approximation.

(2) Computation of W requires special programs and cannot be carried out

using existing statistical packages. In 1983 the Minitab statistical computing

system will contain a command that will produce in its output the rank estimate

B and the test statistic W. There is further discussion of computation in
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Section 3. (3) With the exception of the small unpublished simulation by

Hettmansperger and McKean (1981) no study of the small sample power of W is

available. In the simulation just mentioned the estimate (14) was used

after some small sample adjustments. For example T* is multiplied by the bias

1/2correction (n/(n-p))I . It was found in the parallelism design that W was

often liberal and needed further correction to reduce the probability of a

type I error. Its small sample power was comparable to the power of the

F, A and D* (in the next subsection) tests.

(iii) Test Based on Reduction due to Fitting the Full and Reduced Models

This method in the rank case is analogous to the F statistic which

can be written as the reduction in sum of squares due to fitting the full and

reduced models. The aligned rank test and the Wald test are not directly

based on the comparison of a reduced and full model. The aligned test is

constructed from reduced-model residuals and the Wald test is a quadratic

form in the full-model estimates. It might seem most natural to combine

estimation with fitting in a robust fashion in order to have a set of strategies

parallel to least squares. Then data analytic methods such as plotting have

direct counterparts based on ranks.

The test is based on Jaeckel's measure of dispersion (8). Let

D($l  D (O)

D* =,(16)

where 81 and 8 are the reduced and full model rank estimates, respectively,

and T is a consistent estimate of T. Under the technical assumptions of

Section 5 McKean and Hettmansperger (1976) show that D* has a limiting

chi-square distribution with q degrees of freedom. Hence, the test based on
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(16) rejects H :B '0 if D* a x(q). Computation of D* requires special
o A

programs for sb8 0 and T. The forthcoming Minitab rank-regression command

will incorporate this test as part of its output. See Section 3 for further

aspects of the computational problems. The test is illustrated on data in

Section 4.

S ary: (1) Hettmansperger and McKean (1977) provide a small simulation

which indicates that D* along with T*, tuned for small samples, has a signifi-

cance level close to the nominal level. HcKean and Hettmansperger (1978)

provide simulation results for the k-step estimate, D* and T*. Again, the

test seems to have a stable level. There are no simulation studies of D

with ;. There is no indication of how large the sample size should be before

the asymptotic distribution of D* with T provides a good approximation. (2)

Because of the computational problems involved in computing 8 and T or T*

(see Section 3) special programs are required to compute D*. In 1983 the Minitab

statistical computing system will produce 8, D* and T' or '* in the output of

a rank-regression command. (3) In an unpublished simulation study by

Hettmansperger and McKean (1981) the test based on D* with T* had power

comparable to the F test and the test based on W.

Finally, it should be emphasized that the use of T* requires the assump-

tion of symmetry of the error distribution. The estimate T does not require

symmetry. It is not yet known how well T will work in the asymmetric case

and it is not know if T will be a viable substitute for T* in the symetric

case. Consistency of t has only been established for the Wilcoxon scores.

This work has been pursued by Aubuchon (1982).

L T
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3. COMPUTATIONS

As was mentioned in Section 2, special programs are necessary to calculate

any of the test statistics other than Adichie's (using least squares to fit

the reduced model). First of all, a program which minimizes the dispersion,

(8), is needed to obtain rank estimates and to evaluate the dispersion for these

estimates. Then, in order to use either the Wald quadratic-form test or the

drop-in-dispersion test, we need a program to compute an estimate of the scaling

functional T appearing in the denominator. The discussion in this section pertains

to procedures generated by the general score functions defined in A9-All in

Section 5.

An algorithm suggested by J. W. McKean (personal communication) for

minimizing the dispersion is perhaps best thought of as a member of the class

of iterative schemes known as gradient methods. The increment to the estimate

Kth (K)
at the K step is given by a positive step size t times some symmetric,

positive definite matrix C times the negative of the gradient:

(K+l) - (K) .CK)cs((K ) . (17)

Recall that -S(s) is the gradient of the dispersion, (9). Two considerations

lead us to set C - (X c'X )- in (17). First of all, since the asymptotic

variance-covariance structure of $ is given by a constant times (Xc'X

a natural norm for B is 11611 (8'Xc'Xcs) / 2 . Results of Ortega and Rheinboldt

(1970) show that the direction of steepest descent with respect to this norm

is precisely (Xc'Xc)-1S(O(K)). On the other hand, Jaeckel (1972) shows that

the dispersion function may be approximated asymptoticly by a quadratic:

D(S) ; D($ ) - (0-6 )'s(B0 ) + (2T)-I(0-80 )'Xc'Xc(B-$o), (18)

0 0 0o cc
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where 8 is the vector of true regression parameters. The minimum of thiso

quadratic is attained for

8 o + T(Xc'Xc)-S(O). (19)

(K)Thus, if we substitute 8a , our current estimate, for 8 in (19) we are again

led to take a step in the direction (X 'X )-S(O(K)).
c c

It remains to choose the step size, t. We might search for the

(K~l)(K)
minimum of D( ) as a function of t using any good linear search method--

the golden section search or one of the other methods described in Kennedy and

Gentle (1980), for example. McKean suggests that this search might be conducted

by making use of the asymptotic linearity of the derivative of Df( +

f _1 (K)
t(Xc 'X)-S(O )] with respect to t, given below in (20). (Compare Hettmansperger

and McKean (1977).) Specifically, he suggests application of the Illinois

version of false position, as discussed by Dowell and Jarratt (1971), to find

the approximate root of this derivative:

((K))x ,c-1~~ ()-1,(S*(t) = a' )X x )(K) + t(Xc X ) SO (20)

c cc c c

which is a nondecreasing step function. Whatever linear search method is

employed, this approach is equivalent to transforming the linear model by

obtaining an orthogonal design matrix and then using the method of steepest

descent.

As with any iterative method, it is necessary to specify starting values

and convergence criteria. One possibility for 8(0) is the usual least-squares

estimate, which is easy to compute and which we would most likely desire for
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comparative purposes in any case. Another choice would be some more resistant

estimate, such as the L1 estimate, which is, however, more expensive to compute.

It is not clear what the trade-offs in computational efficiency would be in

making such choices. For a convergence criterion it may be best to focus on

relative change in the dispersion, since the value of 8 which minimizes the

dispersion is not gen4.Tally unique. Criteria which check whether the gradient

is (approximately) zero will not be useful, since the gradient is a step

function and may step across zero.

If, in (17), we let C - (Xc 'X as suggested and set t(K)c T , an

estimate of T computed on the residuals at the Kth step, we essentially have

an iterative scheme based on the K-step estimates discussed in Section 2ii.

While such estimates may be of interest in their own right, early experience

of McKean and others indicates that, taken as an algorithm for minimizing the

dispersion, this scheme can behave rather poorly for some data sets, failing

to converge to, and in fact moving away from, a minimizing point.

We should also mention that Osborne (1981) and others have developed

algorithms for minimizing the dispersion using methods of convex analysis.

Although iterative methods are not needed to compute the window estimate

of T, a naive approach will not be very efficient. Schweder (1975) suggests

an interesting scheme for computing ZEI{Iri-rjI<hn/2} but doesn't give details.
ij

A time- and space-efficient algorithm based on Schweder's suggestion may

be found in Aubuchon (1982).

With the assumption that the error distribution is symmetric, McKean and

Hettmansperger (1976) show that a consistent estimate of T may be obtained by

applying a one-sample rank procedure to the uncentered residuals, ri - -

A+

x ic 'B, using the one-sample score function corresponding to 0: (u) =

0((u+l)/2). If ( auc) is the 100 (1-a) Z confidence interval obtained for
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the center of symmetry in this fashion, then T - v (aU-aL)(2Z/ 2) is a

consistent estimate of T. This approach is an extension of the work of

Sen (1966) to the linear model.

If Wilcoxon scores are used, there are at least three approaches to

obtaining aL and cU . If storage space and efficiency are not of critical

importance, the n(n+l)/2 pairwise (Walsh) averages may be computed. Then

aL nd aU are the (c+l)st and (n(n+l)/2 - c)th order statistics from this set,

where c is the lower critical point of a two-sided, size-a Wilcoxon signed-rank

test. This critical point may be obtained from tables or from a normal approxi-

mation. Any fast algorithm for selecting order statistics might then be used

to find C and aU ; see, for example, Knuth (1973). An approach which is faster

and which requires much less storage is based on Johnson and Mizoguchi (197B),

with improvements discussed by Johnson and Ryan (1978). These papers actually

present the algorithm for the two-sample problem; but simple modifications

make it applicable to the present case as well. One advantage of this method

is that it still selects exact order statistics from the set of Walsh averages,

without computing and storing all of them. A third method, relying on the

asymptotic linearity of signed-rank statistics, does not guarantee exact

results but is quite fast and space-efficient. The Illinois version of false

position is used to find approximate solutions to the equations (21) defining

aL and a in terms of a signed-rank statistic:

r V(ctL) z a/2

(21)

" - -Z01/ 2
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where V(a) - 1  0 +(R+/(n+l))sign(r -a), R + is the rank of Iri-l among
i-i

Ir3 Ir a nd c*/2 is the upper a/2 point of the standard normal

distribution. See McKean and Ryan (1977) for the use of this algorithm in the

corresponding two-sample problem.

For certain other score functions, for example the scores suggested by
* A

Policello and Hettmansperger (1976), a L and au are order statistics from a

well-defined subset of the Walsh averages. In this case, the first two methods

discussed above are still applicable. In general, a ad aU are weighted

order statistics from the Walsh averages, with weight a +(J-i+l) - a +(J-i) given

to (r(i) + r(j))/2, where a+(i) - a +(i/(n+l)); see Bauer (1972). Thus, if a

program for selecting weighted order statistics is available, the first method

still works. Otherwise, the third method may be used with any score function.
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4. EXAMPLE

In order to illustrate the procedures discussed in this paper, we have

applied them to data from an experiment described by Shirley (1981). In

this section computations are based on the Wilcoxon scores in (6). Two

censored observations are recorded at the censoring point for the purposes

of this example. The data are displayed in Table 1. Thirty rats received

a treatment intended to delay emtrp into a chamber. The rats were divided

into three groups of ten, & control group and two experimental groups. The

experimental groups each raceived some antidote to the treatment, while the

control group received none . 'Ifte time taken by each rat to enter the chamber

was recorded before the treatment and again after the treatment and antidote -

if any.

-Table 1 About Here -

We consider the measurement before treatment as a covariate and test for

interaction between the grouping factor and the covariate; i.e., we test for

equal slopes. The observations are strongly skewed; we applied the natural

log transformation to gain some degree of symmetry so that the estimate T* in

(14) may be applied to the data.

Computations for the aligned rank test, using least squares to fit the

reduced model, can be carried out in the SAS statistical computing system

(see Helwig and Council (1979)) using the following program:
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DATA;
INPUT BEFORE AFTER ANTIDOTE;
LOG AFT - LOG (AFTER);
CADS;

{data goes here}

PROC GLM;
CLASS ANTIDOTE;
MODEL LOG AFT - ANTIDOTE BEFORE;
OUTPUT OUT-RESID RESID-RESID;

PROC SORT DATA-RESID;
BY RESID;

DATA RSCORE;
SET RESID;
RSCORE- SQRT(12) * (N_/31 - .5);

PROC GLM DATA-RSCORE;
CLASS ANTIDOTE;
MODEL RSCORE - ANTIDOTE BEFORE ANTIDOTE*BEFORE;

The desired test statistic will be the Type 4 sum of squares for ANTIDOTE*BEFORE

in the second GLM output.

The same calculation can be made in the Minitab statistical computing

system (see Ryan, Joiner and Ryan (1981)). Some manipulation is necessary

to create the design matrix so that the REGRESS command can be used. Indicator

variables for the first two groups are put in 'All and 'A2'; then two inter-

action columns, 'INTERl' and 'INTER2', are produced by multiplying each of

these by the covariate.

NAME C1 - 'BEFORE' C2 - 'AFTER' C3 - 'ANTIDOTE'
NAME C4 - 'LOG.AFT' C5 - 'Al' C6- 'A2'
NAME C7 - 'A3' C8 - 'INTERl' C9- 'INTER2'
NAME ClO - 'STD.RES.' Cli- 'FITS' C12 - 'RANKS'
NAME C13 - 'RSCORES' C14 - 'RESIDS'

READ 'BEFORE' 'AFTER' 'ANTIDOTE'

{Data goes here}

LET 'LOG.AFT.' - LOGE('AFTER')
INDICATORS FOR 'ANTIDOTE' IN 'Al' 'A2' 'A3'
LET 'INTERi' - 'Al' * 'BEFORE'
LET 'INTER2' - 'A2' * 'BEFORE'
REGRESS 'LOG.AFT' 3 'Al' 'A2' 'BEFORE' 'STD.RES.'

'FITS'
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LET 'RESIDS' - 'LOG.AFT.' - 'FITS'
RANKS OF 'RESIDS' IN 'RANKS'
LET 'RSCORES' - SQRT(12) * ('RANKS'/31 - .5)
REGRESS 'RSCORES' 5 tAl' 'A2' 'BEFORE' 'INTER1' 'INTER2'

The test statistic is then the sum of the last two sums of squares in the

table labeled "SS Explained By Each Variable When Entered In The Order Given."

In general, the columns to be tested should be given last in the REGRESS

command used to fit the full model to the rank scores.

The divisor 31 used to calculate the rank scores in the two programs

corresponds to the quantity (n+l). Using either program, we have the value

.42 for the test statistic. When this is compared to a X2 critical point

with two degrees of freedom, we fail to reject the hypothesis of equal slopes

at any reasonable level. We could now proceed to perform similar tests for

the group effect and for the covariate.

A program implementing the algorithms described in Section 3 in Fortran

was used to perform the Wald test and the drop-in-dispersion test for the

equal slopes hypothesis. Both of the estimates for T discussed in Section 2i

were employed. The results are presented in detail for comparison with other

programs for minimizing the dispersion. In Table 2, the fitting of full and

reduced models is summarized. The values in parentheses correspond to the

least-squares estimates, which were used as starting values.

-Table 2 About Here -

Seven steps were required to attain covergence of the full-model estimates,

while three steps were used for the reduced-model estimates. We report the

2)-1
two estimates of T, given by T - (12 y for y in (12) and by T* in (14).

The least-squares estimate of a is also shown.

t'4
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In Table 3 we present four test statistics, corresponding to use of

either the Wald test statistic in (11) or the drop test statistic in (16)

combined with either T or T* as an estimate of T in the denominator. For

comparison, we also list the aligned rank test statistic computed above, as

well as twice the usual least-squares F statistic. All of these statistics

- Table 3 About Here -

may be compared to the upper a-point of the chi-square distribution with

two degrees of freedom. In practice, we would most likely apply some small-

sample tuning to T* or T. Further, we would divide all of the test statistics

except, perhaps, Adichie's by the numerator degrees of freedom q (q - 2

for this example) and compare the results to the upper a-point of the F

distribution with q and n-p-l degrees of freedom.
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5. EXTENSIONS AND TECHNICAL ASSUMPTIONS

The procedures discussed in Section 2 may be generalized by use of

scores other than Wilcoxon scores. The technical assumptions used by different

authors to obtain results for these procedures and their generalizations have

shown considerable variation. Two papers establishing asymptotic linearity

of rank statistics for general linear models, those of Jureckova (1971a) and

Kraft and van Eeden (1972), are of central importance for the theory of rank

tests and estimates in these models. Other authors frequently rely on the

results of these papers and state some subset of the assumptions of one or the

other or both. It is not always clear that the subset given in a particular

paper is actually sufficient, since details of proofs are often omitted.

For our purpose it seems adequate to list for comparison the assumptions made

to obtain the linearity results in these two seminal papers. We consider in

turn three categories of assumptions: on the error distribution, on the design

matrix and on the scores. We will then state the assumptions of the principle

papers establishing properties of the procedures we have discussed. Before

continuing we should note that different versions of the test statistics

discussed here may also be obtained by use of signed-rank scores rather than

the rank scores which we have used. See Kraft and van Eeden (1972) and

Jureckova (1971b) for asymptotic linearity results in this case.

The two papers, Jureckova (1971a) and Kraft and van Eeden (1972), make the

same assumptions about the error distribution.

ASSUMPTION: A6. F has density f with finite Fisher information; that is, f

is absolutely continuous and f (f'(y)/f(y)) <fy)dy < "

Beyond the simple assumption (A2) that Xc has full rank, requirements

for the design matrix are rather complicated.
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ASSUMPTION: A7 (Jureckova):

-1
(a) n X c'X - Z, a positive definite matrix, (A4);

(b) X(I) - X + X X (I ) having nondecreasing columns, X nonincreasing.

This decomposition of X is stated somewhat differently from what appears in

Jureckova (1971a), but the two versions amount to the same thing. Such a

decomposition is, in fact, always possible; but for C(m) . XCm) - 1R(m ) ,

(m = 1,2) and for each j = 1, 2, ... , p,one of the following two conditions

must also be satisfied:

(i) the jth column of C( m) is zero for all but a finite number of n; or

(ii) the jth column of C (M ) is nonzero for all but a finite number of n,

-i n (M) 2- Z (C ij ) is bounded, and the column satisfies Noether's condition:
i=1

max (Ci (M))2

i ii
lim =0.

n (m) 2n1 4- CO (Ci

ASSUMPTION: A8 (Kraft and van Eeden):

(a) n 1 'X 'X 0 Z, a positive definite matrix, A4;
() -ic c

(b) each column of X satisfies Noether's condition:c

max (x ) 2

lim i ijc 0n 2
n Z i~ (xijc

xJ) adx()(~)o ,teeeit

Sijc

(c) For any pair of columns x c  and xc (k) 0k) of X, there exists
Yjk#0 (JQ) a Q x ( ) + j (k)

and N such that n > N implies xc  and xc + Ylkxc are similarly

ordered. Two vectors z and w are similarly ordered if (z i-z )(w i-w) _ 0

for every pair (i,j).

. ... . . .. .- ... . . - - . . . . . . . A
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Usually the scores are generated from a function * on (0,1) in some
manner.

ASSUMPTION: A9 (Jureckova):

Suppose 0 is a nonconstant, nondecreasing, square-integrable function

on (0,1) or the difference of two such functions. Then we may let the scores

be a(i) - (i/(n+l)) or a(i) - E[ ,(Ui))], where U is the ith order

statistic from a sample of size n from the uniform distribution on (0,1).

ASSUMPTION: A1O (Kraft and van Eeden):

Suppose G is a distribution function with absolutely continuous density

g. Suppose further that g (u) = -g'(Gl(u))/g(GCl(u)) is the sum of two

monotone, square-integrable functions on (0,1). Then we may let

a(i) - 0(i/(n+l)).

ASSUMPTION: All.

f1 1 f 2C
We require that =(u) 0 and 1(u)du - . Score functions

which are square-integrable may alwavy be standardized in this way with"ut

affecting the properties of the resulting tests or estimates. In ade Lion,
.1 1

we define T - EJ(u)Of(u)du] ; this is the scaling functional appearing in

the asymptotic variance-covariance matrix of the rank estimates and in the

denominators of the Wald and drop-in-dispersion test statistics.

We now discuss each of the procedures, stating the assumptions

required.

Adichie's Aligned Rank Test. The common assumptions A6 about the error

distribution are adopted. As Adichie (1978) states his results, the nxl

vector of ones, 1n , can not be in the column space of the design matrix.

.. ... i. ... | _ ...... ..n
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Thus, in particular, the model can not include an intercept. This seems to

be a serious shortcoming for practical applications. However, it is possible

to deal with the problem. Consider the model: Y - an + X$ + en

- a*l + X a + e. Since X is centered, 1 is not in its column space. Thus,
n c c n

if we let Y* - Y - a*ln, Adichie's results would apply to the model

Y* - X 8 + e, allowing us to test hypotheses about B. The fact that Y* is
C

unobservable since a* is unknown doesn't matter. Adichie's statistic computed

on Y* is exactly the same as that computed on Y, which we do observe. For

the rest, Adichie states that either the conditions A8 on the design of Kraft

and van Eeden (1972), or those of Jureckova (1971a) A7 will suffice. Adichie

generates the scores as a(i) - 0(i/(n+l)), where 0 satisfies the requirements

A9 of Jureckova. Thus, as we have stated Adichie's procedure, assumptions A2,

A3, A6, A9, All and either A7 or A8 are needed.

Wald Quadratic-Form Test. This test relies only on the asymptotic

distribution of the rank estimates used. Thus either the conditions of Kraft

and van Eeden (1972) or of Jureckova (1971a) will be sufficient; that is,

either A2, A6, A8, A1O and All or A2, A6, A7, A9 and All.

Drop-in-Dispersion Test. McKean and Hettansperger (1976) establish

the asymptotic properties of this test statistic taking Jureckova's (1971a)

assumptions for a foundation, with the additional requirement that ra(i)-O.

It would seem that the results could also be obtained under the Kraft

and van Eeden (1972) conditions, although this has not been carried out.

Thus assumptions A2, A6, A7, A9 and All are needed.

These last two test procedures require a consistent estimate of the

scaling functional T. If the estimate suggested by McKean and Hettmansperger

(1976) is used, it must be assumed that the error distribution is symmetric.
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In extending the window estimate of T to the linear model, Aubuchon (1982)

required the density to have a bounded second derivative. This extension

is applicable only for Wilcoxon scores.



27

Table 1. Times Taken for Rats to Enter Cages

Group I Group 2 Group 3

Before After Before After Before After
treatment treatment treatment treatment treatment treatment

1.8 79.1 1.6 10.2 1.3 14.8

1.3 47.6 0.9 3.4 2.3 30.7

1.8 64.4 1.5 9.9 0.9 7.7

1.1 68.7 1.6 3.7 1.9 63.9

2.5 180.0+ 2.6 39.3 1.2 3.5

1.0 27.3 1.4 34.0 1.3 10.0

1.1 56.4 2.0 40.7 1.2 6.9

2.3 163.3 0.9 10.5 2.4 22.5

2.4 180.0+ 1.6 0.8 1.4 11.4

2.8 132.4 1.2 4.9 0.8 3.3

+Censored observations.
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Table 2. Fitting Full and Reduced Modelsa

Full Reduced

Dispersion 17.942 (18.126) 18.306 (18.372)

a- Intercept .664 (.465) .836 (.874)

81 - Antidote 1 - Antidote 3 2.20 (2.43) 1.60 (1.61)

A
82 - Antidote 2 - Antidote 3 -3.90 (-.020) -.235 (-.342)

83 - Before 1.20 (1.35) 1.10 (1.08)

84 - Slope for Antidote 1 - Slope for Antidote 3 -.323 (-.502)

85 = Slope for Antidote 2 - Slope for Antidote 3 .101 (-.221) --

aTabled numbers correspond to procedures based on Wilcoxon scores; numbers

in parentheses correspond to least-squares.
*^ A

NOTE: T - .5309 T*- .5215 a - .7884
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Table 3. Tests for Equal Slopes

Test statistic

Estimate of T W D*

1.12 1.38

1.15 1.40

NOTE: A - .42 2F .67
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